RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

B.A./B.SC. FIRST SEMESTER EXAMINATION, DECEMBER 2012

FIRST YEAR

COMPUTER SCIENCE (Honours)

Date : 14/12/2012 Time : 11 am – 2 pm

Paper : I

Full Marks : 75

Use separate answer-book for each group

Group – A

(Answer any two questions)

- a) Translate the following English sentences into Propositional logic formulas: 1. i) Many with show up only if Fred shows up. ii) Many will be extremely happy but Fred will be surprised. 2+2b) What do you mean by Tautology? Check whether the following expression is a Tautology: $(p \Rightarrow (q^{\wedge} r)) \Leftrightarrow (p \Rightarrow q)^{\wedge} (p \Rightarrow r).$ $2+2\frac{1}{2}$ c) i) Define wff in Predicate calculus. ii) Write the following English statement in terms of Predicate logic formulas: "Some sleepy students didn't answer any questions". 2+2a) Find out the relation between the number of bits to represent information and the number of parity 2. bits to generate a Hamming code. If the information bits are 1011₂, generate the corresponding Hamming code. 2+3b) Convert the Gray code 110011 to its binary equivalent. 2 c) Using algebraic methods, prove the following two versions of Concensurs Theorem: 2+2i) $XY + \overline{X}Z + YZ = XY + \overline{X}Z$ ii) $(X+Y)(\overline{X}+Z)(Y+Z) = (X+Y)(\overline{X}+Z)$ X. Y and Z are three Boolean variables. d) Represent the Boolean expression $Y = A + B\overline{C}$ using NAND gates only. $1\frac{1}{2}$ a) Given a quadratic equation $5x^2 + 50x + 125 = 0$ in a base r. The roots of the equation are -8 & -5 in 3. base 10. Find the value of base r. 5 b) "Boolean algebra doesn't ensure realization of minimized Boolean function. But still some point of time it will be used to realize minimization of Boolean function." - Proof or disproof the above
 - comment with proper justification.
 c) What do you mean by Veitch diagram? How it is used to minimize a Boolean function? State the

1+2+2

3

Group – B

(Answer any five questions)

4. a) What is the logic realized by the circuit shown in the figure below:

limitation of this diagram.

	b) What are control and status registers?	2
	c) Briefly discuss various stages of instruction cycle using instruction cycle state diagram.	5
5.	a) Realize a J-K flip-flop using a D flip-flip.	6
	b) Illustrate the working principle of a 4-bit serial adder.	4
6.	a) Write down the instructions in zero-address format and three-address format to execute the following operation: X=A*(B-C).	2+2
	b) Why is it necessary to have different addressing modes of any assembly language program?	2
	c) Make a comparative study between RISC architecture and CISC architecture.	4
7.	a) Express $(0.239)_{10}$ in Excess-64 base 2 representation.	3
	b) Perform (8÷3) using Booth's restoring division algorithm.	5
	c) What are the basic design methods of hardwired control unit?	2
8.	a) Design a 4×4 RAM using 1×1 RAM cells.	3
	b) State differences of SRAM and DRAM.	2
	c) What is cache coherency?	2
	d) For a three level memory system, let T_1 , T_2 and T_3 be the effective access times of the levels respectively. Given $T_2 = 2T_1$, $T_3 = 3T_1$ and hit ratio $h_1 = h_2 = 0.9T_1$. Calculate average memory access time in terms of T_1 .	3
9.	a) Design a full-subtractor using necessary multiplexer(s).	5
	b) What do you mean by the race-around condition? With a proper diagram, explain the way this condition is avoided using a master-slave flip-flop.	2+3
10.	a) Design the logic circuit of a 4-bit parallel adder-subtractor. Also explain its function.	3+3
	b) Design a logic circuit which can convert a 3-bit number to its 2's complement form.	4

80參Q3